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A new method is presented for numerically generating boundary-fitted coordinate systems 
for arbitrarily shaped three-dimensional regions. In the method, the three-dimensional region 
of interest is decomposed into several hexahedrons, each of which has two grid surfaces 
overlapped with each of the neighboring hexahedrons. Based on this method, a new computer 
program GRID-3D has been developed, which allows the generation of an unlimitted number 
of different types of coordinate systems. Application to a variety of geometries confirms that 
GRID-3D is a convenient and efficient tool in the generation of boundary-fitted coordinate 
systems even for a considerably complicated configuration consisting of many different com- 
ponents. 

1. INTRODUCTION 

In the numerical solution of partial differential equations, the discretization of field 
requires the following considerations with regard to the arrangement of its grid 
points: 

(4 accurate representation of boundary shapes, 

(b) grid concentration in regions of expected large gradients of the physical 
solution, 

(c) smooth coverage of the entire field, and 

(d) specification of the relations between grid points, such as computational 
sequence and relative positions. 

In many engineering problems, regions in the immediate vicinities of boundary 
surfaces usually exhibit large gradients of the solution, and are dominant in deter- 
mining the character of the entire solution; examples include a viscous boundary 
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layer in fluid dynamics and stress concentration in solid mechanics. Therefore, the 
solution accuracy, in particular, depends on the treatment of boundary conditions for 
the above first and second considerations. 

The finite difference method uses one of the Cartesian cylindrical and spherical 
coordinate systems in such a way that the coordinate lines are coincident with the 
boundaries. But this approach needs some interpolation between the grid points for 
complicated boundary shapes with strong curvature or slope discontinuities, which 
may introduce significant numerical errors. The finite element method, on the other 
hand, has geometrical advantages for matching complicated boundaries, but it 
requires a lot of experience and time for constructing the grid points over the field 
while satisfying the above third and fourth considerations. 

One of the most effective ways to overcome these problems is the use of boundary- 
fitted coordinate systems [ 11. The technique for such coordinate systems is based on 
an automated numerical generation of a curvilinear coordinate system having a coor- 
dinate line coincident with each boundary of the physical region of interest. It also 
has capabilities to exercise control over the spacings of the coordinate lines in the 
entire field, and to simplify the finite difference expression by transforming three- 
dimensional geometries in a physical space to a rectangular shape in the transformed 
space. 

This paper presents a new method of numerically generating boundary-fitted coor- 
dinate systems for arbitrarily shaped three-dimensional regions. The method uses the 
techniques of decomposing the physical region into several hexahedrons and of 
overlapping neighboring hexahedrons with two grid surfaces. Based on this method. a 
new computer program, called GRID-3D, has been devloped. Its capabilities and 
applications are also presented here. 

2. DESCRJPTION OF THE METHOD 

The generation of boundary-fitted coordinate systems can be accomplished by 
solving numerically the elliptic partial differential equations with the Dirichlet 
boundary conditions [2]. But when dealing with geometrically complicated three- 
dimensional domains, the generation procedure becomes more complex and has less 
flexibility in adapting to a broad variety of geometries. 

One approach to a complicated three-dimensional domain is to divide it into a 
number of geometrically simple subdomains, and to patch together coordinate 
systems generated separately for each subdomain [3]. In this approach, the coor- 
dinate lines can remain continuous across the surface of juncture between two 
adjacent subdomains. However, some first derivatives of the coordinate lines will be 
discontinuous at the boundary without any provision for control of the intersection 
angles there, which may introduce significant numerical error or decrease the 
convergence speed in solving physical partial differential equations. 

In the present method, a complicated physical domain is divided into several 
hexahedrons, each of which has six curved or plane surfaces. Each subdomain grid is 
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generated independently, and then is joined with the others to form a composite grid 
for the original domain. To ensure the composite grid remains both continuous and 
smooth across the boundaries, an overlap of two grid surfaces is adopted between any 
two adjacent hexahedrons. 

Figure 1 illustrates the procedue for generating the grid, which consists of the 
following steps: 

Step 1. Calculate the coordinates of the inner grid points for a hexahedron 
using the predetermined grid coordinates on the six surfaces of the hexahedron. 

Step 2. Transfer the calculated coordinates of the overlapped grid points to the 
outer surfaces of the neighboring hexahedrons. 

Step 3. Using the transferred coordinates, calculate the coordinates of inner 
grid points for the neighboring hexahedron. 

Step 4. This calculation is repeated for all hexahedrons. Unless the 
convergence requirement is met for all grid points, return to Step 1 with new grid 
coordinates on the surfaces of hexahedrons. 

Reg,on of a hexahedron 

Decompmtion into hexahedrons 

Calculation of inner grid 

coordinate 

Transfer of ,nner grid 

to nelghbmng hexahedron 

FIG. 1. Procedure for generating the grid using domain decomposition and overlapping. 
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The inner grid coordinates for each hexahedron are calculated by solving the 
elliptic system of quasilinear equations [4], 

allXlb + a22X,, f a33Xc5 + 2a12XI, + 2a13XIc + 2a23XvI 
+ Jz(PXt t QX, t RX,) = 0, (14 

all Y,, + az2 Y,, f a33 Y,, + 2a12 Y,, + 2a13 Y,, + 2a2, Ynl 
tJ2(PYI+ QY,tRY,)=O, (lb) 

allZtI + a,,Z,, + a33Zc1 + 2a12Zltl + 2a13Zll + 2a23Zq6 
t J2(PZt + QZ, t RZ,) = 0, (lc) 

where IX, K Zl and [t, r, C] are coordinates in the physical and transformed spaces, 
respectively, and P, Q, and R are functions for controlling grid spacing, and 

(2) 
m=1 

where pmj is the cofactor of the (m,j) element in the matrix, 

And J denotes the Jacobian determinant of the inverse transformation, 

(3) 

(4) 

The boundary conditions are specified on the six plane surfaces of a transformed 
rectangular body, 

[ti, V> i] E Ti (i = l, 2)> 

[& ~3 ii] E ri (i = 5, 6), 

(5b) 

(5c) 
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FIG. 2. Boundary surfaces of a hexahedron. 

where &, vi, and ii are specified constants, and ri (i = 1, 2,..., 6) are the six boundary 
surfaces as shown in Fig. 2. These boundary conditions are specified in advance on 
outer surfaces of the original whole domain or determined by the solution of the 
generating system Eq. (1) for the neighboring hexahedrons. 

The functions P, Q, and R in Eq. (1) may be chosen to make the grid concentrate 
as desired. The following forms of these functions are obtained by modifying the 
forms incorporated in the TOMCAT program of Thompson et al. 151, 

TABLE I 

Coeffkients Used in Control Functions P, Q, and R 

Attracted Planes Planes, Line, or Point Attracting Neighboring Planes 

u,, # 0 for c = constant plane 

a,, # 0 for ij = constant plane 

a,, # 0 for c = constant plane 

a,, f 0, a,, = 0, a,, = 0 for 5 = <, plane 

CII # 0, c,2 = 0, C,) = 0 

n,, = 0, a,* # 0, a,, = 0 for tj = 7, plane 

c,, = 0, c,* # 0, c,3 = 0 

a,, =O,a,, = O,a,, #Ofor <=(,plane 

C,, = 0, ci2 = 0, C,) # 0 

a,[ = 0, a,] f 0, a,, f 0 for (Ir, i) = (vi, i,) line 

C-II = 0, c,2 # 0, Cl3 # 0 

a,, = 0, al2 = 0, a,, f 0 for (6 i) = CC, i,) line 

CII = 0, c,* = 0, c,3 # 0 

a,, f 0, a,> # 0, a,, = 0 for (t, v) = (t,, a,) line 

c,, # 0, C12 # 0, C,) = 0 

a,, f 0, or2 f 0, a,, f 0 for (6 v, i) = CC,, VI3 i,) point 

c,, f 0, c,> f 0, CI1 f 0 
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where 

T, = &$ - r,>’ + CI*(V 45 c,,K - 0’. (7) 

The sets of the coefficients a,,,, and c,,,,, as shown in Table I, attract the <, v, and/or 
[ = constant planes to the specified plane, coordinate line, or grid point. The range of 
the attraction effect is determined by the decay factor b,,. The effect of the 
controlling functions are shown in the example of Section 3B. 

3. COMPUTER PROGRAM AND APPLICATIONS 

A. Description of GRID-3D Program 

A new computer program GRID-3D has been developed on the basis of the 
method described in Section 2. Figure 3 illustrates its calculation flow. Main input 
data provided to the program are geometrical data, the total number of grid points in 
r, v, and [ directions of each hexahedron, and values of parameters needed for the 
overlapping between hexahedrons. 

The physical grid coordinates must also be given on the outer surfaces of the whole 
domain under consideration. GRID-3D has two functions which simplify this 
procedure. One is the use of a geometrical data package, which calculates the 
physical coordinates of the outer surfaces employing user-supplied geometrical data. 
The following geometries can be treated by the package: sphere, hemisphere, 
ellipsoid, cone, rectangular, cylinder, shell, and torus. 

The second function in GRID-3D is the synthesis of these geometries by rotation, 
translation, and scaling. Rotations of a geometry around the X, Y, and Z axes, for 
instance, is accomplished on the basis of 

(8) 

Pa> 
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Read input data 

I 

Specify grid coordinates on outer surfaces of 

whole domain under consideration 

Assumr grid coordinates on overlapping su,fnces 

bptmeen t\\o hexahedrons 

325 

I 
Interpolate coordinates on SIX surfaces of each 

hexahedron for initial guess of inner grid 

coordinates 

-4 

Calculate inner grid coordinates for the N-th 

hexahedron (Eq. (1)) 

I 

Transfer the calculated coordinates on the 

overlapping surfaces to the surfaces of 

neighboring hexahedrons 

K ll,a \ : Total number of 
trexahedrons 

I Store coordinates (x, p, z), Jacobian J and 

coefficients /ki of all grid points I 

Drai% grid configurations in specified planes and 

perspective protections of the whole domain I 

FIG. 3. Calculational steps in GRID-3D. 

Pb) 

(9c> 
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where [X0, Y,, Z,] and [X, Y, Z] are the grid coordinates of the original and the 
rotated geometries, respectively, and L, , L,, and L, are rotation matrices around the 
X, Y, and Z axes by 8 radians, respectively. 

With the specified grid coordinates on the outer surfaces of the whole domain and 
the assumed grid coordinates on overlapping surfaces between hexahedrons, the 
program calculates inner grid coordinates for each hexahedron by solving Eq. (1) 
using the SOR technique. The calculated coordinates [X, Y, Z], Jacobian J, and coef- 
ficients /?,,,j of all grid points are stored in forms to be used in the solution of a partial 
differential equation arising from a physical problem. 

The program can draw the grid configurations in specified planes and the 
perspective projections of the whole domain. This graphic display capability makes it 
possible to choose the best grid arrangement for a particular problem. 

B. Numerical Results and Discussion 

When a three-dimensional physical domain is treated by several hexahedrons, the 
curved smooth surface of the domain must often be assigned to more than one 
surface of a hexahedron. As a typical example of this point, Fig. 4 shows the grid 
configuration for a sphere, where the sphere is treated by single hexahedron and the 
surface of the sphere is divided into six curved surfaces of the same shape. In this and 
succeeding figures, the perspective projection of a whole domain and the grid 
configuration in a specified {, 7, or [ = constant plane are shown. In the program, 
variables <, q, and [ are assumed to take integer values as 

rl = I plane 77 = 6 plane 

FIG. 4. Perspective projection of coordinate system for a sphere in a physical space. 
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r=I (I= 1, L., I,,,), 

v=J (J = 1, L., J,,,), 

<=K (K = 1, L., K,,,), 

so that v = 1 and v = 11 planes in Fig. 4 correspond to r, and r, surfaces of the 
hexahedron in Fig. 2, respectively. In this example, the corner of the hexahedron 
corresponds to a point on the smooth surface of the sphere, which results in zero 
Jacobian at the corner. Therefore, some special treatment is required for solving a 
physical partial differential equation at the corner of the hexahedron. Figure 4 also 
demonstrates that a sphere can be treated by a rectangular-type coordinate system, 
which is more useful than the spherical coordinate system when more grid points are 
required in the outer region of a sphere without concentrating grid points in the center 
region. 

The following two examples demonstrate how the same type of coordinate system 
can be generated for different geometries. Figure 5 shows the grid configuration for a 
90 degree-bent cylinder. The circumference of the circle is divided into four equal 
lengths; these arcs correspond to the constant < or 7 lines, while the axial direction 
corresponds to the c-direction. Note that [= 1 and [ = K,,, planes, which 
correspond to r, and r, planes, respectively, in Fig. 2, have the same grid 
configuration as the inner (= 2 and (= K,,, - 1 planes have. GRID-3D uses a 
special treatment for c = 1 and [ = K,,, planes, that is, although grid coordinates on 

\ 

Y ; = 1 plane 

X 

n = I plane v = 3 plane ri = 6 plane 

FIG. 5. Perspective projection of cordinate system for a 90’.bent cylinder in a physical space. 



328 MIKI AND TAKAGI 

FIG. 6. Perspective projection of coordinate system for a torus in a physical space. 

these planes are specified in advance, they are changed in an iteration procedure by 
transferring the calculated coordinates on the adjacent inner plane to the outer i = 1 
or i = K,,, plane. This smoothness of the grid coordinates along the axial direction 
is more convenient for some engineering problems, such as a fluid flow problem in an 
elbow pipe. 

The curvilinear coordinate system in Fig. 5 can be used in a straightforward 
manner for a torus, as indicated in Fig. 6. In this example, the c = 1 and c = K,,, 
planes are joined to the < = K,,, - 1 and [ = 2 planes, respectively, so that the torus 

; =23 plane 

n = 6 plane h X c = 1 plane t: = 6 plane e =ll plane 

FIG. 7. Perspective projection of coordinate system for a T-shaped cylinder in a physical space. 
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is treated by a single hexahedron with two overlapping planes. Note that there is 
smooth coverage of grid points in the entire domain. 

The next example shows grid configuration generated by using two hexahedrons 
overlapping each other. The geometry shown in Fig. 7 consists of two cylinders 
joined to each other at right angles, each of which is treated by a hexahedron. 
Although the cylindrical coordinate system is best suited for a cylinder, it is 
extremely difficult to match the coordinates in the junction region between two 
cylinders. The rectangular-type coordinate system, as shown in Fig. 7, is much more 
flexible in matching between the other rectangular-type coordinate system. The coor- 
dinate system in the figure shows an accurate representation of the boundary shape 
and smooth coverage of grid points even in the overlapping region between the two 
hexahedrons. It should be noted that almost an orthogonal grid configuration can be 
obtained in r = 6 symmetry plane. 

The last example demonstrates the grid generation capability of the GRID-3D 
program. Figure 8 shows the grid concentration in a particular region by using the 
controlling functions P, Q, and R given in Eq. (6). In this example, 5 and 
q = constant planes are attracted to the four outer surfaces (c = 1, r = 11, ~7 = 1, and 
q = 11 planes) of a 90 degree-bent cylinder. Increasing the coefficients a,, in Eq. (7) 
l and v = constant planes move closer to the boundary. This kind of grid concen- 
tration can improve the accuracy of the numerical solution for fluid flow problems in 
an elbow pipe. 

: = 1 plane 

‘i = 6 plane 

a(,=aI~=lOO 

'a b,, =b,? =O 1 

cp,=cp?=l 0 

i = I plane 5 

v = 6 plane 

C 

ap, =a(~=200 
‘b’ bp, =bp2=0 1 

ct, =cp2=1.0 

‘i = 6 plane 

C 

at, =a,2=300 

c bl, =b,,=O.l 

cp, =cp2 =1 0 

FIG. 8. Grid concentration along outer boundary of the 90”-bent cylinder. 
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4. CONCLUSION 

A new method has been presented for numerically generating boundary-fitted coor- 
dinate systems for arbitrarily shaped three-dimensional regions. The method uses the 
techniques of decomposing the three-dimensional region into several hexahedrons and 
of overlapping them with two grid surfaces. An important feature inherent in the 
method is that the coordinate lines can remain both continuous and smooth 
throughout the whole domain despite the domain division. 

A computer program GRID-3D has been developed on the basis of the method, 
and was applied to a variety of geometries, including a sphere, a 90 degree-bent 
cylinder, a torus, and a T-shaped cylinder. These applications confirmed that GRID- 
3D is a convenient and efficient tool in the generation of boundary-fitted coordinate 
systems even for a considerably complicated geometry consisting of many different 
components. Therefore, as a pre-processing aid, GRID-3D will provide significant 
progress toward improved productivity in the field of computer-aided design (CAD). 
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